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Silicon carbide polytypes as equilibrium structures 
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TCM Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 15 August 1989 

Abstract. The phonon free energy is calculated for several silicon carbide polytypes using a 
valence overlap shell model. The three most commonly observed polytypes, i.e. (2), (23) 
and (3), are shown to be thermodynamically stable, with (2) and (3) as the low- and high- 
temperature phases, respectively, and (23) in between. The long-ranged phonon effect splits 
the multiphase degeneracy between phases (2) and (3) to which Sic  is extremely close at T = 
0 K, and itstabilises(23) withasignificantlylargestabilityregionof500 K. Thecalculationsof 
the interatomic displacement-displacement correlations demonstrate how the long-ranged 
interatomic interactions arise from the phonons. The formation theory of longer-period 
polytypes is also discussed. 

1. Introduction 

The purpose of this paper is to study the finite-temperature phonon effects on the 
stability of S ic  polytypes. S i c  exists in dozens of different structures called polytypes 
[l, 21, built up by stacking identical S i c  layers in different stacking sequences. The 
number of layers in a repeat period ranges from one to more than a thousand. The two 
main interesting questions are why S i c  forms polytypes and what physical properties 
induce such long-ranged interactions. 

The present paper is one of a series considering those questions [3-51. Previous ab 
initio total-energy calculations showed that the majority of S i c  polytypes have lower 
energies than those not observed [3]. In particular, the phases (2) and (3) in the Zhdanov 
notation [6] (see below) had almost equal energies, the lowest among those calculated. 
This explains in broadest outline why S i c  forms polytypes, almost all of which consist of 
2-bands and 3-bands (see below), i.e. of the structures (2) and (3) and their intermediate 
phases. 

Two specific remaining questions are: (i) Are any of these more complex polytypes 
genuine equilibriumphases, and, if so, which ones? (ii) Also, if so, what phase transitions 
can one expect between them as a function of temperature T? Such effects require quite 
long-ranged interactions, and we shall show (section 3) that phonons can indeed produce 
them. We shall present the results of phonon free-energy calculations relevant to both 
questions (i) and (ii). These are based on a valence overlap shell model (VOSM) of the 
interatomic forces, which has been reported and tested previously [7]. The technical 
details of the phonon calculations are contained in section 2. In particular, we find 
(section 4) that the phonons produce a phase transition from the phase (2), which we 
consider is probably the ground state at T = 0, to the phase (3) at high temperature. We 
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also investigate the simplest intermediate phase (23) in detail, finding (section 4) that 
the phonons give it a stability region of several hundred degrees between phases (2) and 
(3). The exact location of these transitions on the temperature axis is hindered by the 
accuracy of the ab initio total-energy calculations [3,4], but it seems clear that the 
phonon free energy makes (23) stable relative to phases (2) and (3). Even higher-order 
polytypes are considered in section 5. Incidentally the phonons tend to favour the 
cubic phase (x), but would suffice to make it stable only at much higher hypothetical 
temperatures of about 15 000 K. The main results of our calculations were summarised 
in a brief letter [4]. 

It will help to outline here the main conceptual framework for our considerations. 
The structures of S i c  polytypes can be considered in terms of ‘spins’, as there are only 
two ways of stacking one S i c  double atomic layer on top of another, designated as ‘up’ 
and ‘down’ spins. The structure of a polytype is then described in the Zhdanov notation 
[6]  by the widths of the bands of parallel spins. For example, the cubic zincblende S i c  is 
(x), the wurtzite structure is (1) and a structure with 44 77 as the repeat unit is (2). 
Between bands of up and down spin we have an antiphase boundary in the stacking, to 
be referred to hereafter simply as a ‘boundary’. Most of the observed S i c  polytypes 
contain only 2- and 3-bands, i.e. bands of parallel spins with widths of two and three 
layers, as already remarked. A convenient zero-order model for their free energies is 
therefore 

F ( T , x )  = Fo(T> + x A T )  with 1/3 < x < 1/2 (1 * 1) 

where x is the concentration of boundaries (i.e. the inverse average band width per 
layer) whose value lies between 1/3 and 1/2. The Fo(T)  and p ( T )  are defined so as to 
make (1.1) exact for the end-phases (2) and (3). The Fo and p contain both the intrinsic 
electronic structure effects (suffix e) at T = 0 as found in previous total-energy cal- 
culations [3], as well as the phonon contributions (suffix ph) considered here. Thus we 
write p( T )  as 

p ( T )  = pe -t p p h ( T ) .  (1.2) 

The p e  is very nearly zero. From matching our results to what can be inferred from 
experiment [ l ]  (section 4), we believe pe is probably slightly negative and we take 

pe  = -5 x 10e4eV (1.3) 

within the calculational uncertainty of lo-’ to 10-3eV of the ab initio total-energy 
computations [3]. Here and elsewhere all energies will be expressed in eV per S i c  pair 
of atoms. 

The main point about (1.1) is that it describes a multiphase degeneracy (MQD) at a 
temperature To where 

= pe + p p h ( T O )  = (1.4) 

From (1.1) and (1.3), we have that (2) is the stable phase at T = 0; whereas we find that 
p p h (  T )  is positive, so that p( T )  sweeps through zero at T = To given by (1.4), making (3) 
stable at T > To. In the simple model (1.1) we have a MOD at To where the free energy 
is indepedent of x ,  i.e. where all phases consisting only of 2-bands and 3-bands in regular 
and irregular arrangements are all equal (degenerate) in free energy. The first effect of 
the phonons that we discuss in section 4 is the sweeping of the system through the MQD 
at temperature To. 
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Figure 1. Schematic picture of one chain of atoms 
in the polytypes with antiphase boundary (see 
text). 

C 

The second effect of the phonons is the splitting of the MQD by effects beyond those 
included in (1.1). For the sake of definiteness, we consider in section 4 specifically the 
simplest intermediate phase (23) with x = 2/5. We write 

( 1 . 5 ~ )  

(1.5b) 

where the term in square brackets is the zero-order approximation (1.1). Clearly if A( Tu) 
is negative, then (23) will be a stable intermediate phase between the structures (2) and 
(3) as Tsweeps through the MQD around Tu. Conversely if A (  Tu) were positive, then the 
MQD would also be lifted but with a transition directly from (2) to (3). (In this paragraph 
we are concerned with the lifting of the degeneracy only with respect to the phase 
(23), ignoring more complicated polytypes.) The A ( T )  is evaluated (section 4) from 
computing the three free energies in (1.5b) and is found to be negative. Let T2 and T3 
be the temperatures at which (23) is degenerate with (2) and (3), respectively, when A( T) 
and p( T )  are taken into account. We find 

T3 - T E -25A(TO)/(a~ph/aT),=,,. (1.6) 
The value of (1.6) depends on the choice of ,U, and hence To, but with Tu = 2400 K we 
find a stability range T3 - T2 of about 500 K! The -25A( To) is of order eV and the 
surprisingly large range results from the small denominator in (1.6). The latter would 
of course contribute in a similar way to the possible stability ranges of higher-order 
polytypes. 

It is necessary to invoke a wider conceptual framework to discuss the possible stability 
of higher-order polytypes. The energy of an arbitrary polytype can be expressed in terms 
of the interaction between antiphase boundaries. Let I, be the boundary-boundary 
interaction (BBI) between boundaries m atomic double layers apart, with superscripts 
NN and NNN denoting the BBI between nearest- and next-nearest-neighbour boundaries. 
It is necessary to distinguish I:N from I:”, as there are at least two types of boundary, 
one corresponding to and the other to $T (section 5 ) .  The difference is important 
because the leading terms enter Z2N and I:” with opposite signs. In terms of BBI, the 
leading term of A( T) is 

A(T) 1 -(1/5) (I:” +It” - 2Iy”). (1.7) 
Various authors [8,9] have considered the general theory of phase stability in terms of 
the sign, range and convexity of the I,,,. In this context it is necessary to generalise the 
theory of Bak and Bruinsma [8] to take into account the two types of boundary (section 
5 ) .  The resulting phase diagram and the conditions to stabilise phases are different from 
that of Bak and Bruinsma. We have not been able to make a direct comparison of the 
free energies of higher-order polytypes because of computer limitations. However, we 
have calculated some further I, and it is in any case more interesting to consider them 
from the point of view of trends and the general conditions for polytype stability (section 
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5). One result is that polytypes with an even number of bands in the Zhdanov symbol 
seem to be stabilised whereas those with an odd number are not, in agreement with 
observation. The other is that, in principle, a ‘devil’s staircase’ of an infinite number of 
intermediate equilibrium phases should not be ruled out, though it requires a rather 
slow fall-off of the interlayer interactions. Although it is difficult to test, computationally, 
the slow fall-off of interactions, it can be investigated experimentally. If the condition is 
satisfied, those at the higher (lower) temperature should have a preponderance of 
3-bands (2-bands). It would seem worth while to see if this effect can be observed 
experimentally. 

All our free-energy calculations imply a BBI of moderate range, say four to eight 
atomic double layers, due to the phonons. Section 3 contains some analysis of this. We 
may obtain a qualitative picture from figure 1. A longitudinal phonon travelling down 
the line of bonds B to C will produce a more or less transverse excitation in the row DE 
beyond the boundary. The discontinuity at the boundary at C will also produce a 
reflection of the phonon to interact with the discontinuity at the neighbouring boundary 
at B. The origin of the interaction is therefore a little bit similar to that in the axial next- 
nearest-neighbour Ising (ANNNI) model [lo], where a kink excited on one boundary 
interacts with another in front of it on the next boundary. However, we believe the 
actual ANNNI mechanism to be irrelevant to Sic ,  as argued elsewhere: the energy 
involved in breaking bonds to form kinks is prohibitive and the nature of ABC stacking 
would result in a structural fault extending in the form of a line to infinity. 

Finally it is necessary to mention some related effects. First, there is the BBI inherent 
in the electronic total energy of the ‘ideal’ structure, which we define to have all perfect 
tetrahedral bond angles and bond lengths equal to that of the cubic phases (m). This was 
found to be significant out to Z, in our previous total-energy calculations, which could 
not be extended to larger inter-boundary separations [3]. (Note that an interplanar 
interaction J ,  translates into a BBI of I ,  - However, some estimates of more distant Z, 
of this origin suggest that it is probably not significant [4,5], so we will not consider it 
further here. Secondly, we have the small internal relaxations of the bond angles and 
bond lengths allowed by the lower symmetry of the polytypes compared with (m). These 
have been calculated for the phases (2), (3) and (23), as reported elsewhere [5]. The 
conclusion there was that such relaxations appear to make a smaller contribution to 
A ( T )  than the phonons, though they probably will reduce the stability width of (23) 
considerably. It was found that the relaxation contribution to A is about 2 x eV, 
which will reduce the stability region of (23) at To = 2400 K from 500 K to 200 K. 
However, they contribute significantly to Z2 and Z,, which has the effect of renormalising 
our F,( T = 0) and pe in (1.1) and (1.2): this has already been taken into account in (1 -3). 
Thirdly, there are several plausible mechanisms to explain polytype formation as non- 
equilibrium growth structures [ 111. We have here considered only the question of 
whether they can be genuinely stable thermodynamic phases, and found that the (23) 
can be and probably some higher polytypes similarly. However, we must admit that the 
free-energy differences beyond (23) become exceedingly small, of order lo-’ eV per S ic  
pair, and we believe that the polytypes with longest repeat distance must involve growth 
conditions. Nevertheless, what particular structures are likely to result may still be 
influenced strongly by what is more and less nearly stable as found in the present work. 

2. Calculational method 

A valence overlap shell model (VOSM) set up previously [7] for cubic S ic  ( ( x ) )  is used to 
calculate the phonon frequencies of S i c  polytypes in their ideal structures, i.e. structures 
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Table 1. The phonon free-energy difference of structures (2) and (3) calculated with three 
different sets of k-points at three different temperatures. The k-point sets are written in the 
sense of Monkhorst and Pack [13] in the Brillouin zone of (1) and exactly the same sets were 
used for the two structures. 

F(l)ph( T )  - F,,,,,(T) ( eV per Sic pair) 

k-point sets 500 K 1500 K 2500 K 

(19,19,12) 1.44 5.66 9.6 
(29,29,18) 1.43 5.63 9.6 
(49,49,30) 1.43 5.62 9.6 

with ideal tetrahedral bonding and the same bond length as that of the ( x )  structure. In 
reality, polytypes have slightly different lattice constants and spacings between layers, 
but it is assumed that the consequent differences in force constants are negligible, so 
that differences in phonon free energies between polytypes are mainly due to the 
differences in geometrical structure. 

In the model, an atom is described by a charged ion and a massless charged spherical 
shell bound together by a spring. The short-ranged interatomic interactions include 
bond stretchings, bond bendings (i.e. bond-angle changes) and the coupling of these 
two. The total of ten parameters is fitted not only to the available experimental data of 
phonon frequencies, but also to some frequencies and especially to some eigenvectors 
calculated from ab initio frozen phonon calculations. The latter is crucial for our inves- 
tigations of the displacement-displacement correlations between atoms, because dif- 
ferent phonon models give quite different eigenvectors even when fitted to the same 
phonon frequencies [ 121. 

The phonon free energy of any structure is described by a set of independent 
harmonic oscillators, i.e. 

where kB is the Boltzmann constant and wj(k)  is the phonon frequency of wavevector k 
at mode j .  The summation is over all modes and over the sampled k-points in the 
first Brilloun zone of the crystal. Because we require the energy differences between 
polytypes, exactly the same set of k-points is used for the polytypes ( x ) ,  (1), (2), (3) and 
(23). This is essential for accuracy [3]. We test the convergence of the k-point sampling 
using three different sets, which correspond to (19,19,12), (29,29,18) and (49,49,30) 
of the structure (1) in the notation of Monkhorst and Pack [13]. The error in the free- 
energy differences due to the finite k-point sampling is estimated to be less than eV 
per S ic  pair (table 1). To investigate the long-ranged phonon interactions, we also 
calculate the free energies of several long-period S i c  polytypes. The k-point sets used 
in those structures have the same first failure star (a criterion to estimate how good a k- 
point set is) [ 131 as that of the set (49,49,30), and whenever the energies of two structures 
are compared, exactly the same k-point set is used for both. 

To demonstrate the long-ranged nature of the phonon interactions in S ic ,  we also 
calculate the interatomic displacement-displacement correlation tensors and the inter- 
atomic force-constant tensors. The equal time correlation tensors depend linearly on 
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temperature at high temperature. As it is the range of the interactions we look for, we 
calculate [14]. 

where u(R,) and M ,  are the displacement and mass of the atom at R,. Also Nk is the total 
number of k-points used in the summation. The w,(k) and e(R,lk,j) are the phonon 
frequency and displacement pattern (eigenvector) of the atom at &for phonon wavevec- 
tor k of modej. The structures used in the investigations are (x), (l), (2), (3) and (4). The 
k-point set used corresponds to (19,19,12) of the structure (1). The convergence of the 
k-point sampling was found by comparing the results of correlations in the (t.) structure 
using(l9,19,8)and(29,29,16)meshes: theerrorislessthan l%oftheself-correlations. 
The interatomic force-constant tensors of polytypes are calculated by Fourier trans- 
formation of the dynamic matrix. The k-point set (19, 19,8) is used and the error due to 
k-point sampling is less than 0.1% of the self-interaction force-constant tensors. 

3. Origin of the long-ranged interactions 

The purpose of this section is to present calculations and a theoretical discussion of (i) 
the moderately long range of the interatomic force constants, which is similar to that of 
the electronic interlayer interaction and the BBI of relaxations [5] in ideal S i c  polytypes, 
and (ii) the longer range of the phonon free-energy interactions in S ic  polytypes, as 
demonstrated by the interatomic displacement-displacement correlations (hereafter 
‘correlations’). 

That Sic  polytypes exhibit moderately long-ranged interactions has been shown by 
the previous work [3]. The interlayer interaction energies (Jn) of S i c  due to the basic 
electronic structure in the sense of [ 3 ]  are significant out to third neighbours. This is 
really the essential condition for the formation of polytypes. Similarly, the Hellmann- 
Feynman atomic forces [5] calculated for the ideal structures of (2), (3) and (23) imply 
that the atomic relaxations in polytypes result in a BBI at least up to Z3, which corresponds 
to fourth-neighbour interlayer interactions. Both effects are similar in nature to the 
interatomic force constants in polytypes. The force constant between atoms ‘1’ and ‘2’ 
is defined as the force that atom ‘2’ feels due to a unit displacement of atom ‘1’ while the 
atoms in the rest of the system are kept fixed. It can be calculated by a Fourier transform 
of the dynamical matrix for the phonons [15], which we do for the ( x ) ,  (l), (2), (3) and 
(4) S i c  polytypes. 

The results for the cubic ( x )  S i c  are shown in table 2 for various neighbours around 
a Si atom taken as origin. The pattern around a C atom (not shown) is broadly similar. 
We see, as expected, a range of a few bond lengths. This is not inconsistent with the 
VOSM for the phonons with only nearest-neighbour interactions appearing explicitly in 
the model, apart from Coulomb interactions. The point is that there is a knock-on effect 
of the electronic shells in the VOSM even though the nuclei are kept fixed in the definition 
of the force constants. The knock-on of the shells transmits the force to an appreciable 
distance. The force constants are somewhat stronger along a zig-zag chain of bonds 
(figure 2) parallel to a (1 10 )  direction. This effect was already pointed out by Fleszar 
and Resta [15] for Ge, where it was much more noticeable. It is presumably due to the 
special geometry of the chain. Longitudinal displacements can be transmitted easily 
along it, and the force constants for that are stronger than the bond-bending force 
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Table 2. Force-constant tensors at various neighbours relative to a Si atom as origin in (2) 
Sic. The Si(n) and C(n) are atoms on the (1 10) chain as shown in figure 2. The positions of 
atoms are written in terms of a/4, where a is the lattice constant of phase ( x )  in a cubic unit 
cell. 

Order of Type of Position Force-constant matrix 
neighbour atom of atom (lo-' dyn cm-') 

0 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

9 

10 

Si(0) 

C(0) 

Si( 1) 

C 

Si 

C(1) 

Si 

Si 

C 

C 

Si(2) 

C 

Si 

1.5853 
0.0000 
0.0000 

-0.3 176 
-0.1628 
-0.1628 

- 0.0602 
- 0.0916 
-0.0174 

0.0283 
-0.0097 
-0.0097 

-0.0169 
0.0000 
0.0000 

0.0090 
0.0122 
0.0017 

-0.0030 
0.0020 
0.0020 

-0.0030 
-0.0045 
-0.0045 

0,0064 
-0.0025 
- 0.0025 

- 0.0040 
0.0040 

-0.0040 

-0.0044 
-0.0081 
-0.0027 

0.0041 
0.0039 

- 0.0007 

- 0.0040 
- 0,001 8 
-0.0004 

0.0000 
1.5833 
0.0000 

-0.1628 
-0.3176 
-0.1628 

-0.0916 
-0.0602 
-0.0174 

-0.0137 
- 0.02 10 

0.0195 

0.0000 
0.0088 
0.0088 

0.0122 
0.0090 
0.0000 

0.0045 
0.0050 

-0.0034 

- 0.0020 
0.0050 

- 0.0034 

-0.0025 
-0.0044 
- 0.0025 

0.0040 
-0.0040 
-0.0040 

-0.0081 
-0.0044 
-0.0027 

0.0031 
-0.0022 
- 0.001 8 

- 0,001 8 
-0.0019 
- 0.0001 

0.0000 
0.0000 
1.5833 

-0.1628 
-0.1628 
-0.3176 

0.0174 
0.0174 
0.0342 

-0.0137 
0.0195 

-0.0210 

0.0000 
0.0000 
0.0000 

0.0156 
0.0156 
0.0017 

0.0045 

0.0050 

-0.0020 
-0.0034 

0.0050 

-0.0034 

-0.0025 
- 0.0025 
-0.0044 

-0.0040 
-0.0040 
-0.0040 

0.0026 
0.0026 
0.0038 

0.0006 
-0.0022 
-0.0041 

0.0004 
- 0.0001 
-0.0025 
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Table 2. continued 

Order of Type of Position Force-constant matrix 
neighbour atom of atom dyn cm-I) 

11 C (5 3 3) 0.0028 
0.0026 
0.0026 

12 Si ( -4  -4 -4) 0.0002 
- 0.002 1 
- 0.002 1 

12 Si (444) 0.0002 
-0.0021 
-0.0021 

13 C(2) (551) 0.0016 
0.0030 
0.0006 

13 C (-711) 0.0029 
-0.0005 
-0.0005 

0.0037 
0.0007 
0.0016 

-0.0021 
0.0002 

- 0.002 1 

-0.0021 
0.0002 

-0.0021 

0.0030 
0.0016 
0.0006 

-0.0003 
-0.00 19 

0.0011 

0.0037 
0.0016 
0.0007 

- 0.0021 
-0.0021 

0.0002 

- 0.0021 
-0.0021 

0.0002 

0.0021 
0.0021 

-0.0010 

-0.0003 
0.0011 

-0.0019 

S i ( . l )  C ( - 1 )  

c i - 2 )  

<, >X( ) 

S i ( 1 )  

Figure 2. Positions of atoms defined in the five structures (x), (l), (2), (3) and (4). The full 
circles represent Si atoms and the open circles C atoms. The arrow gives the direction of the 
displacement of atom Si(0) and the component taken of the force or displacement at the 
other atoms. 

constants needed to 'go round a corner'. It was already pointed out in connection with 
figure 1 that going round a corner involved a longitudinal displacement becoming a 
softer transverse one in the context of polytypes: the same effect applies in the ( m )  
structure for propagation to atoms other than those in the (1 1 0) chains. The much more 
isotropic force constants in S i c  might be due to the different shell charges of Si and C 
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Table 3. Responses in the sense of the interatomic force constant in response to a unit 
displacement of the Si(0) atom in the structures ( x ) ,  (l) ,  (2), (3) and (4). The positions of the 
atoms are illustrated in figure 2 .  The displacement of Si(0) and the component of the resulting 
force on other atoms are both taken parallel to the chain direction, as shown in figure 2. All 
the responses are normalised to the self-interaction, i.e. the restoring force at Si(0). 

Atoms ( x )  

Si(0) 1 
C(0) -0.3030 

Si(1) -0.0958 
C(1) -0.0134 

Si(2) -0.0079 
C(2) 0.0029 

Si(3) -0.0017 
C(3) 0.0010 

(1) (2) (3) (4) 

1 1 1 1 
-0.3027 -0.3031 -0.3039 -0.3030 

0.0110 -0.0975 -0.0958 -0.0957 
0.0054 0.0145 0.0141 0.0137 

0.0018 0.0020 -0.0079 
0.0032 0.0030 0.0030 

- 0.0023 
0.0015 

atoms, i.e. Coulomb effects. The force constants in S ic  are therefore moderately long- 
ranged in all directions, while those in Ge are only strong for the atoms in the (1 10)  
direction. 

Although we have shown the moderately long-ranged nature of the force constants 
in (x) Sic,  the corresponding long-ranged interlayer interactions and the phonon BBI 
actually result from the changes in the force constants due to the presence of boundaries. 
As we already know that the interactions are long-ranged, instead of inspecting the 
general 3 x 3 tensors we look at the response in a direction (chosen to be in the (1 1 0) 
direction) along a chain to a unit displacement on atom Si(0) also parallel to a chain. 
The effect of a boundary at various distances from the Si atom are shown in table 3 for 
the atoms shown in figure 2. Instead of working with a single boundary, which is 
computationally difficult, the results are taken from calculations on polytypes ( l ) ,  (2), 
(3) and (4), so that they include minor contributions from more distant boundaries. All 
the responses are normalised to the self-interaction in each structure. As the absolute 
values of these self-interactions in different structures differ from each other by less than 
1%, they are all taken to be unity. In table 3 we see the differences caused by a nearby 
boundary by comparing corresponding atoms (figure 2) in different structures. The 
effects are significant, but not very large. For example, the force at Si(2) in (x) and (4) 
differs from that in (2) and (3), where there is a boundary in between. The difference are 
of order 1% of the self-interaction. The difference at Si(2) between (2) and (3) is very 
small due to the effect of a more distant boundary at C(-1) and C(-2), respectively 
(figure 2). We conclude that the boundary effects of the ‘static’ interactions (force 
constants) are significant up to third-neighbour double layer and so are their differences 
between polytypes, i.e. 12, but cannot extend much beyond that. 

To sum up the above discussion, the force constants and their differences between 
polytypes show a moderately long range out to third-neighbour atomic double layer 
in appropriate directions. This range is somewhat surprising in a saturated covalent 
material, and we believe is analogous to the Friedel oscillations in a metal, though here 
damped from the existence of the energy gap [ 161. The range found in the force constants 
is the same as seen in the intrinsic interplanar interactions J ,  [3] in the sense of [3] and 
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Table 4. Correlation function between atom Si(0) and the other atom specified in figure 2, 
for displacements in the same direction as in table 3 and figure 2 .  

Atoms (m) (1) (2) (3) (4) 

1 
0.604 

0.396 
0.270 

0.200 
0.150 

0.120 
0.096 

1 1 1 1 
0.604 0.604 0.607 0.603 

0.243 0.385 0.387 0.395 
0.197 0.255 0.257 0.269 

0.159 0.161 0.196 
0.137 0.138 0.144 

0.120 
0.101 

in the BBI due to atomic relaxation around antiphase boundaries [ 5 ] .  Indeed, all three 
effects display the response of the intrinsic electronic structure to a perturbation. 

We turn now to the BBI due to phonon free energy. The main point of the present 
section is that the phonon BBI has a considerably longer range even than that discussed 
above. It involves how much the atomic vibrations at B in figure 1 ‘feel’ the effect of the 
boundary at C on the vibrations there. This effect is described by the displacement- 
displacement correlation function (2.2). It is the displacement of an atom ‘2’ due to the 
displacement of an atom ‘1’ while all the other atoms in the system are allowed to relax. 
As the correlation involves a knock-on effect between atoms (not just the electron shells), 
it is expected to be appreciably longer-ranged than the interatomic force constants. This 
can be seen by comparing correlation response of atoms in the (CA) structure in table 4 to 
the force constants in table 3. The correlations between atoms decay to one-tenth of the 
self-correlations at the six-neighbour atom while the force constants decay to one-tenth 
at the third-neighbour atom. Incidentally, by dividing the phonon bands into various 
ranges of frequency, we have found that the long-ranged effects are mostly due to 
the low-frequency end of the acoustic branches. The difference between polytypes is 
therefore connected with the region where the purely acoustic w ( k )  turns into the flat TA 
mode so characteristic of the diamond structure and sensitive to stacking arrangement. 

The long-ranged BBI correspond to the difference of the long-ranged correlations 
with and without boundaries. Similar to the above procedure in investigating the ‘static’ 
effect of boundaries, the interatomic correlations of (I), (2), (3) and (4) parallel to the 
chain direction are listed in table 4. The effect of a boundary at the second-neighbour 
double layers changes the response by up to 4% of the self-correlation, as can be seen 
by comparing Si(2) and C(2) of ( w )  or (4) with (2) or (3). Although the atoms Si(2) and 
C(2)  of (3) are actually closer to Si(0) than those in ( w ) ,  the response is still stronger for 
the latter, where the chain is unbroken. For the third-neighbour layer interaction, the 
response of Si(3) of (4) is about the same as that of the ( x ) ,  because now the factor of 
distance is balanced by the special long-ranged property of the (1 10) chain. The C(3) 
of (4) is nearer to the origin than the C(3)  of (m)  and has a slightly stronger response 
equal to about 0.5% of the self-correlation, presumably due to the Coulomb interaction. 
This is an order of magnitude larger than the effect in the ‘static’ interaction. The 
‘dynamic’ interaction, i.e. the correlation or phonon interactions, thus has range that is 
much longer than that of the ‘static’ interactions, i.e. the force constants. 
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Table 5. Phonon free energies of various polytypes and values of 25Aph( T) and ,+,( T )  at six 
different temperatures. The zero-point phonon energies are also listed and always included 
a t T > O .  

Phonon free energy (eV per Sic pair) 
Temperature 
(K) (=) (3) (23) (2) PLph(T) 25Aph(T) 

0 0.218 7096 0.218 6817 0.218 6759 0.218 6684 -0.000 0798 -0.0000120 
500 0.144 7930 0.144 5077 0.144 5125 0.144 5220 0.000 0858 -0.000 0230 

1000 -0.120 3718 -0.120 2998 -0.120 2872 -0.120 2638 0.000 2160 -0.000 0450 
1500 -0.509 6324 -0.509 5201 -0.509 5002 -0.509 4639 0.000 3372 -0.000 0645 
2000 -0.983 8639 -0.983 7122 -0.983 6853 -0.983 6362 0.000 4566 -0.000 0875 
2400 - 1.410 425 - 1.409 942 - 1.409 909 - 1.409 850 0.000 552 -0,000 095 
3000 -2.112 103 -2.111 873 -2.111 832 -2.111 758 0.000690 -0.000125 

Another feature one notices is the monotonic decrease of the interactions with 
distance, for both Si and C atoms. This implies that the sign of the phonon contribution 
to the interplanar force constantsj, (section 5) would remain the same and its magnitude 
decrease monotonically. This is important for the stability of higher-order phases, as we 
shall discuss in section 5 .  

4. The phase (23) 

Although this is the shortest section of the paper, it contains the most significant result 
as has already been summarised in section 1, namely the stability range of (23) as an 
intermediate phase between (2) and (3). The phonon free energies of (2), (3) and (23), 
the values of pph( T )  (defined in (1.1) and (1.2)) and the values of 25A( T )  (defined in 
(1.5)) at various temperatures are listed in table 5 .  As noted in section 1, equation (1.1) 
is defined to be exact for the two end-phases, so that pph(T) is given by 

First, we note the positive values of p@,( T ) .  It favours phase (3) at high temperature, 
i.e. the system sweeps through the M@D (1.4) from phase (2) at low temperature to phase 
(3) at high temperature. 

Secondly, the negative values of A( T )  indicate that the MCDD (1.4) is split by phonons 
and the phase (23) stabilised. 

Thirdly, there is the question of the exact value of pe and hence of To in (1.2) and 
(1.4). The experiments suggest that, if (23) is an equilibrium phase as our calculations 
show, then To must be around 2400 K. According to (1.4) and table 5, this corresponds 
to the value of pe in (1.3). We infer the value of To from the various annealing experiments 
and observations of growth conditions that have attempted to establish a phase diagram, 
particularly figure 4 of [17] and tables 5 and 6 of [l] .  The stable phases from low 
temperature to high temperature do seem to be ( 2 ) ,  (23) and (3) there, in agreement with 
our results. 
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Figure 3. Phase diagram of S i c  polytypes. The heavy full curve shows how p ( T )  sweeps 
through p( T )  = 0 at a temperature T,, = 2400 K.  The M@D of equation (1.4) is split and (23) 
is a stable intermediate phase between temperatures T ,  and T3. The two interphase lines 
between phase (23) and phases (2) and (3) are two multiphase lines corresponding to phases 
with dominant 2- and 3-bands, respectively. These phases would split from the two multi- 
phase lines and have finite stability region providing the long-ranged phonon interactions of 
S i c  exist and satisfy certain conditions [section 5 ) .  

We now calculate the range of stability for (23). Expanding the free energies of (23) 
(1.5a) and (2) and (3) (1.1) at temperatures T2 and T3 around To, one obtains 

T O  - T 2  = +lOA(TO)/(apph/aT),=,, 

T 3  - T O  = -15A(To)/(apph/aT),=,, 

(4 * 2) 

(4.3) 

and thus (1.6). The splitting of the M@D ((4.2) and (4.3)) and the total p ( T )  of S ic  as a 
function of temperature are illustrated in figure 3, which shows clearly the phase tran- 
sitions due to the effect of temperature on the three free energies. 

Finally, we also examine the stability of phase (m) .  The status of this phase was left 
unclear by the experimental data of [17]. The phonon free energies of ( m )  at various 
temperatures are listed in table 5. The phase (x) has lower phonon free energy than 
phase (3) and the difference increases as temperature increases. Therefore, phase (m) 
becomes stable at higher temperature than phase (3). From the phonon free energies at 
finite temperature and electronic energies [3] at T = 0 K of structures (x) and (3), we 
estimate that (m) would be stable at a hypothetical T L- 15 000 K. 

5. Higher-order polytypes 

In this section we shall discuss the theory of formation for a large number of higher- 
order polytypes on the basis of BBI due to phonons. We shall start by discussing the 
theoretical ideas of Bak and Bruinsma [8], who proved the existence of the complete 
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devil’s staircase, i.e. an infinite number of stable commensurate phases, in a one- 
dimensional model (hereafter referred to as the BB model). They considered ‘entities’ 
with interactions I ,  between them when the two entities considered are distanced m 
lattice spacings apart. Three conditions on I ,  are required to give an infinite number of 
phases as the chemical potential /3 for introducing new entities is varied: 

(i) The I ,  are repulsive, i.e. 

I ,  > o .  (5.1) 

(ii) The I ,  are convex, i.e. 

(iii) The I, have infinitely long range. 

A more general theory and criteria for the existence of an infinite number of phases 
in terms of general interactions, e.g. including not only pairwise interactions, were 
formulated by Fisher and Szpilka [9]. This general theory, when applied to the model 
of Bak and Bruinsma, requires the same conditions as the above three to stabilise an 
infinite number of phases. 

As mentioned in the first section, the energies of polytypes can be written in terms 
of a chemical potential /3 and interactions Z, between antiphase boundaries. These 
boundaries can be seen to be similar to the interacting entities in the BB model. However, 
for Sic ,  there are at least two kinds of BBI. They correspond to interactions between like 
boundaries,i.e. between JT and &? orbetween T i  and T i ,  andbetweenunlikeboundaries, 
i.e. and JT . The two cases differ by having an odd or even number of boundaries in 
between the two boundaries considered. One can clearly see their difference by writing 
the energy of polytypes in terms of the pairwise interlayer interaction in the sense of [3], 
i.e. 

(5.3) 

where J ,  is the nth-neighbour interlayer interaction energy and si = + 1 or - 1 for an up- 
spin or down-spin S ic  layer (section 1). Note that one can express the energy of an 
arbitrary polytype either in terms of the BBI or in terms of the interlayer interaction 
model (5.3). In terms of the pair interlayer interaction energy],, we have that the energy 
for introducing a boundary is 

p = 2 C , i J i  
I 

and the interaction between boundaries is 

(5.4) 

Note that these two different BBI have opposite sign! As IF” and Ikdd cannot both be 
repulsive, it implies changes of the phase diagram from the one in the BB model. 

A further complication arises in trying to extend a Bak-Bruinsma analysis to S ic ,  
namely the model (5.3) is a simplification of the energy expression for a general polytype. 
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Table 6. Contributions to J,, from the phonon free energy. 

Energy (lo-+‘ eV per Sic pair) 
Temperature 
(K) J ,  J 2  J ,  K3 J ;  Yi J ;  J$ Y‘ 

500 0.334 0.042 0.008 -0.009 0.020 0.002 0.000 0.012 0,001 
1500 1.404 0.128 0.026 -0.026 0.060 0.005 0.001 0.032 0.002 
1500 2.398 0.215 0.042 -0.045 0.102 0.008 0.004 0.053 0.003 

The general expression contains in addition to (5.3) some terms that are formally 
multilayer interactions, the first of which is 

K 3 S , S , +  IS,+Zs, f 3 .  (5.6) 
The analysis of Shaw and Heine [18] has shown that such terms arise from the fact that 
a given layer, as well as having up or down ‘spin’, can be laterally in either an A, B or C 
position relative to another layer in the usual sense of stacking layers in the diamond 
structure. Thus (5.6) is a modification of the interaction J 3  between layers i and i + 3 
depending on their relative lateral position, which is determined by the spins of the 
layers i + 1 and i + 2 in between. Such terms could introduce wholly new phases into 
the phase diagram if they were sufficiently large to overwhelm the effect of all other 
shorter-ranged interactions. For example, if (5.6) were sufficiently large, it would 
stabilise a phase (31), which does not occur in the model (5.3) with all J,, = 0 for n 4. 
However, in what follows we shall consider the effects of], only, for two reasons. First, 
the monotonic decrease of correlations between atoms in the different structures of 
table 4 suggests that it is unlikely that the multilayer interactions are strong enough to 
stabilise new phases. Secondly, when we consider a particular M@D, e.g. that between 
(2) and (3), or  that between (2) and (23), etc., the J ,  and K,, of the phases on the M@D 
are always in a fixed combination for low n. For example, for the M@D (1.4), the fixed 
combination for n = 3 isJ3 - (4/3)K3, which we shall term 1;. Thus, within the context 
of one particular M@D, the more general model is nearly equivalent to the simpler of 
(5.3) with modified values of the parameters. The further discussion will therefore be 
restricted to the simplified model (5.3) withJ,, only, except that when quantitative values 
are involved we shall consider the effective J,,. There are two kinds of effective J ,  that 
we shall mention here. One is J A ,  which is of the M@D considered, and the other is J,“, 
which corresponds to the leading term to split a M@D. 

We present in table 6 the phonon free-energy contributions to nth-neighbour inter- 
layer interaction for n = 1 to 6 at various temperatures. For n = 1 to 3, they are in 
addition to the intrinsic contributions of the electronic structure [3]; for n 2 4, the 
phonon free energy dominates, as already discussed (sections 1 and 3). For J1 to J 3 ,  the 
values were obtained by calculating the phononfree energies of ( x ) ,  (l), (2), (3) and (23), 
five phases being needed to get the appropriate combination of J 3  and K3 in the sense 
of Jj just stated. The values of fourth to sixth interlayer interactions were obtained 
approximately as the leading terms in the phonon free-energy difference between (8142) 
and (9132), (7152) and (8142), and (9162) and (10 152) respectively. These leading terms 
(called J x )  are the sum of J ,  ( n  = 4 , 5  and 6) and the corresponding K,  (there are two, 
five and nine K, for n = 4,5  and 6 respectively). We also listed the values of 15” obtained 
from A( T ) .  The large difference between J 5  and J f  comes from three sources. The first 
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one is the uncertainty of calculations, which we estimate to be less than eV (section 
2). The second one is due to the different combinations of J 5  and K 5  (there are five 
different multilayer interactions that are part of the fifth-neighbour interactions), which 
we judge to be the major factor. The third source is the longer-ranged interactions J ,  
and K,, for n > 5 ,  which might also have a minor effect. We thus conclude that the values 
of K, are about the same order as those of J ,  and it is important to take appropriate 
effective J,, i.e. JA , for M@D and J," in considering the splitting of the M@D. 

We now discuss whether one can extend the argument of Bak and Bruinsma to prove 
the existence of a complete devil's staircase with an infinite number of phases in the 
splitting of our M@D of (2) and (3) or S ic .  The main point is clearly to take into account 
the essential difference expressed in (5 .5 )  from their model. We start by noting that the 
J ,  in table 6 are all positive and monotonic within the calculation uncertainty. From the 
correlation calculations (section 3), we may justifiably extrapolate from table 6 to say 
that we expect the effective J ,  from the phonon free energy to be (i) all positive, (ii) 
decreasing monotonically and (iii) of infinite range in principle. It further seems that we 
also have the further condition (iv): 

(5 .7 )  

(5.8) 

- p d d  < 0 

which leads to the pair of convex conditions 
I;d$yven) + I;d$ev") - 2pdd(even) = + 4J ,  > 0 ( -4J,  < 0). m 

In the BB model, ZLdd and IFn are identical. However, to stabilise phases with even 
(odd) number of bands in the Zhdanov symbol (hereafter as even (odd) phases) usually 
requires the convex condition of an I ,  that has an odd number of bands in between the 
two boundaries considered. The condition ( 5  .S) thus has the important consequence 
that the leading term of the condition to stabilise odd phases disfavours the stabilisation. 
To push the analysis one step further, we consider specifically the stability of the phases 
((22)"23) and ((22)"-'223) with respect to (2) and ((22)"-'23). Both phases are stable in 
the BB model. It is not difficult to show that, from the leading terms in J , ,  to stabilise 
((22)"23) requires 

J m - 2  < 21, m = 4 n + 5  (5.9) 

and to stabilise phase ((22)"-'223) requires 

Jm-2  < J,. (5.10) 

The condition (5.10) is not physical, as the interactions would have to increase with 
distance and diverge at infinity. The even phase ((22)"23) is thus more favourable than 
the odd phase ((22)"-l223). Similarly, the stability condition for the even phase (23(33)") 
is 

J m - 3  < W m  m = 6 n + 5  (5.11) 

while the condition for the odd phase (233(33)"-') suffers from the same divergence as 
(5.10), namely 

Jm-3  < J,. 

The even phases ((22)"23) and (23(33)") are therefore stable if the additional conditions 
(5.9) and (5.11) are satisfied. These additional conditions arise from the elimination of 
the odd phases. They require a rather slow fall-off of the J,, with distance, i.e. at least 
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slowerdecaythanJ, = (2)-"'2for((22)"23)andJ, = (2)-"I3for(23(33)"). Itistheeffective 
J,, that should be taken here. From the limited calculated data of J, in table 6, we cannot 
draw a definite conclusion. However, the slow fall-off of the force constant (table 2) and 
correlations (table 4) suggest that it cannot be completely ruled out. 

Other difficulties arise with the more complex phases, which we shall not discuss in 
detail. However, condition (5.8) of S i c  is an indication in the direction that generally 
even phases are more favourable. This arises as follows. Let the Zhdanov symbol be M 
layers long. The term JMspr+M always enters with positive (negative) sign in the energy 
(5.3) of the polytype for an even (odd) number of bands. Relative to its neighbours, it 
has a leading term proportional to 

2lM - I M +  1 - d!M- 1 t (5.12) 

If the structure has an even number of bands in M layers, then the interactions in (5.8) 
will be for an odd number of boundaries in between, so from (5.8) the value of (5.12) is 
negative, thus stabilising the polytype. 

A very different approach is from the point of view of the branching process, which 
was discussed by Duxbury and Selke [ 191 and de Fontaine [20]. In the case of Sic ,  phases 
(2) and (3) are actually made of the units 22 and 33. We have already deduced the 
existence of phases (23). The intermediate phases between (23) and (2) can be viewed as 
pairs of bands 23 being inserted in a background of pairs 22. Thus the pair 23 becomes 
the 'entity' in the sense of the BB model while (2) is the 'empty' background. The phases 
between (23) and (3) can be treated similarly. This process will only end up with even 
phases. Note that this makes quite a difference to the phase diagram. For example, the 
phase intermediate between (23) and (2223) is (222323), which does not occur in the 
staircase of the BB model. In the BB model the distance to thepth-neighbour boundary 
in a structure is either rp layers or rp + 1 layers. For the new phases, this is no longer 
true. For example, in phase (222323), the possible distances to the third-neighbour 
boundary are six, seven and eight layers because the 2-bands and3-bands in the structure 
are not as evenly distributed as before. Thus the analysis of BB, which relies on this fact 
(combined with the convexity condition), can no longer be carried through. However, 
for the pth-neighbour boundary, where p is an even number, this property is still 
retained. This also comes from taking the basic building blocks as 22, 23 and 33. We 
therefore consider it  likely that there is also an infinite sequence of these phases, though 
no general proof is possible. While the mapping in terms of pairs of bands into the BB 
model is formally correct in an abstract sense, unfortunately difficulties appear when 
trying to adapt the detailed algebra, as we saw in (5.9) and (5.11). 

We conclude from the above discussion that, first, all stabilised S ic  polytypes are 
more likely to have even number of bands in the Zhdanov symbol. Secondly, in addition 
to the convex condition, other conditions are needed actually to stabilise long-period 
phases because of the elimination of phases with an odd number of bands in a period. 
They depend on quantitative conditions on the J,. A devil's staircase of an infinite 
number of phases might be present; it requires a slow fall-off of interlayer interactions. 
All the above discussion considers the polytypes as equilibrium phases. The stability 
range from the higher-order ones becomes rather small, though not as narrow as one 
might expect because of the smallness of the denominator in (1.6), which always enters 
the stability range. For example, we already estimated A T  = 500 K for phase (23) in 
section 4. However, the free-energy differences become tiny, as is clear from table 6, 
and one might wonder about the ability of the system to distinguish between phases, 
i.e. what is the time for equilibrium to be established. There are plausible growth 
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mechanisms for the origin of polytypes [13], as mentioned in section 1, which must be 
operative for the ones with very long repeat distances. Nevertheless, the broad types of 
structure that grow must presumably still be influenced by the considerations discussed 
above, in particular the even number of bands in the Zhdanov symbol. 
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